Chemisch-physikalische Wasseranalyse Analysen: Eurofins Institut Jäger GmbH - Ettishofer Str. 12 - 88250 Weingarten Stand: 20.06.2023

Einheit Grenzwerte Laupheim und Ober- und Baustetten
TrinkwV Bihlafingen Untersulmetingen

Allgemeine Parameter

Parameter

Die allgemeinen Indikatoren beschreiben grundlegende Qualitätsmerkmale des Trinkwassers. Für Trink- und Leitungswasser sollte zum Schutz des Leitungsnetzes das Wasser leicht basisch sein (Wert > 7). Leicht saures Wasser würde Rohre mit Zementauskleidung oder verzinkter Stahl langfristig schädigen. Sauerstoff im Wasser ist für viele physikalisch-chemische Vorgänge von großer Bedeutung, vor allem für die Geruchs- und Geschmackseigenschaften. Der Sauerstoffgehalt ist allerdings stark von der temperatur des Wassers abhängig. Steigt dieser, so nimmt der Sauerstoffgehalt ab. Da reines Wasser den elektrischen Strom nicht leitet, ist die Leitfähigkeit ein Indikator für die Menge an gelösten Teilchen (z.B. Mineralien, Salzen usw.) die die Leitfähigkeit erhöhen. je höher der Wert der Calcitlösekapazität ist, desto schlechter für Werkstoffe wie bspw. Beton, da diese das Kalzit aus diesen herauslösen. Der Härtegrad gibt an, wie viel gelöste Mineralsalze, z.B. Magensium, Kalzium, im Trinkwasser enthalten sind. Maßgeblicher Einflussfaktor ist hier die geologische Beschaffenheit des Bodens, aus welchem das Trinkwasser gefordert wird.

Temperatur	°C	-	16,5	10,9	18
pH-Wert	-	6,5-9,5	7,67	7,39	7,28
Sauerstoff	mg/l	-	8,8	9,4	7,2
Leitfähigkeit bei 25°c	μS/cm	2790	635	757	678
Calcidlösekapazität	mg/l	5	-44	-23	-26
Gesamthärte	°dH	-	17,7	19,5	19
Gesamthärte	mmol/l	-	3,15	3,48	3,39
Carbonathärte	mmol/l	-	3,06	3,02	3,12
Härtebereich	-	-	hart	hart	hart

Kationen

Kationen sind positive geladenen Inhaltsstoffe im Wasser. Calcium, Kalium, Magnesium und Natrium sind dabei natürliche Mineralstoffe, die unser Körper benötigt. Ammonium hingegen entsteht durch Zersetzung von Proteinen durch Bakterien durch Abbau von Fäkalien, Harn oder tierischen Abfällen. Eisen und Mangan können in Tiefenwässern auftreten oder durch Korrosionsvorgängen. Bei der Trinkwasseraufbereitung werden diese weitgehend entfernt.

Ammonium	mg/l	0,5	< 0,06	< 0,06	< 0,06
Calcium	mg/l	400,0	94,9	103	101
Eisen	mg/l	0,2	< 0,005	< 0,005	< 0,005
Kalium	mg/l	12,0	1,6	1,8	2,3
Magnesium	mg/l	50,0	19,1	22,2	21,2
Mangan	mg/l	0,1	< 0,001	< 0,001	< 0,001
Natrium	mg/l	200,0	9,1	16,2	11,1

Anionen

Anionen sind negativ geladenen Inhaltsstoffe im Wasser und sind bis auf Bromat und Phosphat natürliche Bestandteile im Trinkwasser. Bromat kann durch Desinfektionsprozesse bei de Wasseraufbereitung entstehen. Phosphat wird in der Landwirtschaft als Düngemittel eingesetzt, im Bereich der Wasserversorgung wird dies zum Schutz der Wasserleitungen vor Korrosion in minimaler Mengen zugegeben. Ein hoher Nitratwert kann ein Indiz für eine intensive landwirtschaftliche Nutzung durch unsachgemäße Düngung oder lokale Verunreinigungen, wie z.B. undichte Kanäle, sein Wasser mit einem Nitratwert von über 50 mg/l sollte nicht für die Zubereitung von Säuglingsnahrung verwendet werden.

Bromat	mg/l	0,01	< 0,0025	< 0,0025	< 0,0025
Chlorid	mg/l	250	17	44	24
Cyanide	mg/l	0,05	< 0,005	< 0,005	< 0,005
Fluorid	mg/l	1,5	< 0,15	< 0,15	< 0,15
Hydrogencarbonat	mg/l	-	370	370	380
Nitrat	mg/l	50	22	33	19
Nitrit	mg/l	0,5	< 0,01	< 0,01	< 0,01
ortho-Phosphat	mg/l	6,7	0,03	< 0,02	< 0,6
Sulfat	mg/l	250	13	23	21

Anorganische Stoffe

Bei den anorganischen Stoffen handelt es sich um Leicht- und Schwermetalle. Diese kommen im Trinkwasser nur in geringsten oder nicht nachweisbaren Mengen vor. Erhöhten Mengen von Blei, Kupfer Nickel und Cadmium in Ihrem Trinkwassers der Hausinstallation sind ein Hinweis auf eine werkstoffbedingte Anreicherung. Vor dem Genuss des Trinkwassers ist es sinnvoll, etwas Wasser nach längeren Standzeiten ablaufen zu lassen.

Aluminium	mg/l	0,2	< 0,005	0,008	0,005
Antimon	mg/l	0,005	< 0,001	< 0,001	< 0,001
Arsen	mg/l	0,01	< 0,001	< 0,001	< 0,001
Blei	mg/l	0,01	< 0,001	< 0,001	< 0,001
Bor	mg/l	1	< 0,02	< 0,02	< 0,02
Cadmium	mg/l	0,003	< 0,0001	< 0,0001	< 0,0001
Chrom	mg/l	0,05	< 0,0005	< 0,0005	< 0,0005
Kupfer	mg/l	2	0,003	0,009	0,005
Nickel	mg/l	0,02	< 0,001	< 0,001	< 0,001
Quecksilber	mg/l	0,001	< 0,0001	< 0,0001	< 0,0001
Selen	mg/l	0,01	< 0,001	< 0,001	< 0,001
Uran	mg/l	0,01	0,0007	0,0035	0,0008

Organische Stoffe

Im Trinkwasser können vereinzelt organische, also Kohlenstoffhaltige Substanzen enthalten sein. Beispielsweise können dies natürliche Stoffe wie Kohlenhydrate und Aminosäuren sein, aber auci Schadstoffe wie Abwasser, Mineralöl, Pestizide usw. 1,2-Dichlorethan, Tetrachlorethen und Trichlorethen findet bspw. Verwendung als Lösungs- und Reinigungsmittelmittel in der Industrie. Benzo-apyren und Benzol entsteht bei der nicht vollständigen Verbrennung von organischen Stoffen wie Holz, Kohle oder Öl. Trihalogenmethane kann als Nebenprodukt bei der Desinfektion von Trinkwasse entstehen.

1,2-Dichloethan	mg/l	0,003	< 0,0005	< 0,0005	< 0,0005
Benzo-a-pyren	mg/l	0,00001	< 0,000001	< 0,000001	< 0,000001
Benzol	mg/l	0,001	< 0,00025	< 0,00025	< 0,00025
Tetrachlorethen und Trichlorethen	mg/l	0,01	nicht berechenbar	0,0037	nicht berechenbar
Trihalogenmethane	mg/l	0,05	nicht berechenbar	nicht berechenbar	nicht berechenbar